44 research outputs found

    Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications

    Get PDF
    Many scientists and engineers are turning to lab-on-a-chip systems for cheaper and high throughput analysis of chemical reactions and biomolecular interactions. In this work, we developed several lab-on-a-chip modules based on novel manipulations of individual microbeads inside microchannels. The first manipulation method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external rotating magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3µm) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. In addition, the microbeads can follow the external magnet rotating at very high speeds and simultaneously orbit around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on-chip in the rotating field. Selective transport of microbeads with different size was also realized, providing a platform for effective sample separation on a chip. The second manipulation method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. Furthermore, we demonstrated the tweezing of microbeads in liquid with high spatial resolutions by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The high-resolution control of the out-of-plane motion of the microbeads has led to the invention of massively parallel biomolecular tweezers.Ph.D.Committee Chair: Hesketh, Peter; Committee Member: Allen, Mark; Committee Member: Degertekin, Levent; Committee Member: Lu, Hang; Committee Member: Yoda, Minam

    Thermohydrodynamic analysis of compressible gas flow in compliant foil bearings

    Get PDF
    This thesis deals with the development of mathematical models and numerical schemes for simulating the hydrodynamic pressure and temperature rise of compliant foil bearings lubricated by a thin gas film in between its compliant bearing surface and the rotating shaft. The model accounts for the compressibility of gas, the compliance of the bearing surface, and the interaction between the pressure field and temperature field of the gas film in the bearing system. Numerical solutions obtained over a fairly large range of operating speeds show excellent agreement with existing experimental data from both load performance test and bearing temperature measurement. A series of parametric study is presented to illustrate the utility of the developed algorithms for characterization of foil bearing performance and guidance of foil bearing design. The numerical algorithm can handle high speeds and high eccentricity ratios, which allows the prediction of realistic performance and characteristics of foil bearings under extreme operating conditions

    Identifiyng the emerging roles of nanoparticles in biosensors

    Full text link
    This paper profiles R&D on the application of nanoparticles in biosensors and explores potential application development pathways. The analysis uses a dataset of nanotechnology publication records for the time period 2001 through 2008 (part year) extracted from the Science Citation Index. It focuses on emergent research activities in the most recent years. Bibliometric analyses are employed to ascertain R&D trends and research networks for key biosensors. Growth models are fit to forecast the technological trend for nanoparticle-enhanced biosensor research activity. In addition, a combination of quantity (publication) and quality (citation) analysis for nanoparticle-enhanced biosensors helps position the leading countries in this research field. Science overlay mapping shows different emphases of nanoparticle-enhanced biosensor research between the US and China, the leading countries. Recent studies suggest that nano-enhanced biosensors show promise for gains in stability, sensitivity, selectivity, and accuracy - for both direct and indirect detection. This paper demonstrates how bibliometric analyses can help anticipate emerging technology development and application potential.<br

    pH-Responsive Dual Drug-Loaded Nanocarriers Based on Poly (2-Ethyl-2-Oxazoline) Modified Black Phosphorus Nanosheets for Cancer Chemo/Photothermal Therapy

    Get PDF
    Synergistic cancer therapy, such as those combining chemotherapeutic and photothermal methods, has stronger treatment effect than that of individual ones. However, it is challenging to efficiently deliver nanocarriers into tumor cells to elevate intracellular drug concentration. Herein, we developed an effective pH-responsive and dual drug co-delivery platform for combined chemo/photothermal therapy. An anticancer drug doxorubicin (DOX) was first loaded onto the surface of black phosphorus (BP). With poly(2-ethyl-2-oxazoline) (PEOz) ligand conjugated onto the polydopamine (PDA) coated BP nanosheets, targeted long circulation and cellular uptake in vivo was significantly improved. With another anticancer drug bortezomib (BTZ) loaded onto the surface of the nanocapsule, the platform can co-deliver two different drugs. The surface charge of the nanocapsule was reversed from negative to positive at the tumor extracellular pH (∼6.8), ionizing the tertiary amide groups along the PEOz chain, thus facilitating the cell internalization of the nanocarrier. The cytotoxicity therapeutic effect of this nanoplatform was further augmented under near-infrared laser irradiation. As such, our DOX-loaded BP@PDA-PEOz-BTZ platform is very promising to synergistic cancer therapy

    SBIR: integrated microvalve array for enzyme labeled immunoassay

    No full text
    Issued as final reportAdaptive Technologie

    Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors

    No full text
    Conformable, sensitive, long-lasting, external power supplies-free multifunctional electronics are highly desired for personal healthcare monitoring and artificial intelligence. Herein, we report a series of stretchable, skin-like, self-powered tactile and motion sensors based on single-electrode mode triboelectric nanogenerators. The triboelectric sensors were composed of ultraelastic polyacrylamide (PAAm)/(polyvinyl pyrrolidone) PVP/(calcium chloride) CaCl2 conductive hydrogels and surface-modified silicon rubber thin films. The significant enhancement of electrospun polyvinylidene fluoride (PVDF) nanofiber-modified hierarchically wrinkled micropyramidal architectures for the friction layer was studied. The mechanism of the enhanced output performance of the electrospun PVDF nanofibers and the single-side/double-side wrinkled micropyramidal architectures-based sensors has been discussed in detail. The as-prepared devices exhibited excellent sensitivity of a maximum of 20.1 V/N (or 8.03 V/kPa) as tactile sensors to recognize a wide range of forces from 0.1 N to 30 N at low frequencies. In addition, multiple human motion monitoring was demonstrated, such as knee, finger, wrist, and neck movement and voice recognition. This work shows great potential for skin-like epidermal electronics in long-term medical monitoring and intelligent robot applications

    Analysis and Detection of Forced Oscillation in Power System

    No full text
    corecore